
What is Razorback?

 A framework to enable advanced processing
of data and detection of events

 Able to get data as it traverses the network
 Able to get data after it’s received by a server
 Able to perform advanced event correlation

 …Our answer to an evolving threat landscape

 Attacks have switched from server attacks to
client attacks

 Common attack vectors are easily obfuscated

 JavaScript

 Compression

 File formats are made by insane people
 Back-channel systems are increasingly

difficult to detect

 Inline systems must emulate the processing
of thousands of desktops

 Detection of many backchannels is most
successful with statistical evaluation of
network traffic

 Broadly speaking, IDS systems deal with
packet-by-packet inspection with some level
of reassembly

 Broadly speaking, AV systems typically target
indicators of known bad files or system states

 A system is needed that can handle varied
detection needs

 A system is needed that extensible, open and
scalable

 A system is needed that facilitates incident
response, not just triggers it

 Provide entry to the system for any arbitrary
data type

 Determine and manage detection based on a
registered detection nugget

 Provide alerting to any framework-capable
system

 Provide verbose, detailed logging on the
findings of the nugget “farm”

 Make intelligent use of all data discovered
during the evaluation process

What makes it tick?

 Dispatcher
 Database
 Various nugget types:

 Data Collection

 Data Detection/Analysis

 Output

 Correlation

 Defense Update

 Workstation

 UUIDs

 types of data in data blocks

 formats of metadata

 types of nuggets

 types of applications

 Allows data to be routed to only the nuggets
equipped to deal with a given format.

 The heart of the Razorback system
 Available APIs:
 Detection Nugget registration

 Data Handler registration

 Detection requests

 Alerting

 Full analysis logging

 Output to API compliant systems
 Database driven

 Database is used to store important context
information surrounding the alert, such as:

 Timestamp

 Priority

 Message

 Source and destination IP

 IP protocol

 Short and long data fields

 Any other metadata

 Uses a persistent UUID for communicating
with the Dispatcher

 Registers with Dispatcher

 Types of data handled

 Types of output generated

 Capture data and generate metadata
 Contact dispatcher for handling

 Has this file been evaluated before?

 Where should it be sent?

 Pass that data set to a Detection Nugget
 Accept feedback from the Dispatcher for

detection request

 Asynchronous alerting

 Local cache of detection outcome

 Handles incoming data from Data Collectors
 Splits incoming data into logical sub-blocks

 Requests additional processing of sub-blocks

 Provides alerting feedback to the Dispatcher

 Receives alert notification from Dispatcher
 If alert is of a handled type, additional

information is requested:

 Short Data

 Long Data

 Complete Data Block

 Normalized Data Block

 Sends formatted data to relevant system

 Interacts with the database directly
 Provides ability to:

 Detect trending data

 Identify “hosts of interest”

 Track intrusions through the network

 Initiate defense updates

 Receives update instructions from dispatcher
 Performs dynamic updates of network

device(s)
 Notifies dispatcher of defense update actions

 Authenticates on a per-analyst basis
 Provides analyst with ability to:

 Manage nugget components

 Manage alerts and events

▪ Consolidate events

▪ Add custom notes

▪ Set review flags

▪ Delete events

 Review system logs

How do they work together?

• Data is captured
• Metadata is generated (URL/filename)
• Checks a local cache of previously looked at

URLs and data signatures
• Uses an API to manage the initial file

evaluation and cache checks
• If further inspection necessary, API threads

out and ships the data off to the Dispatcher

• Tracks all nuggets in the system
• Finds the set of nuggets with the capability to

handle the incoming data type
• Routes incoming detection requests to that

set of nuggets
• Keeps track of metadata via an event id

• Processes data provided by the Data
Collectors, as instructed by the Dispatcher

• Data is portioned out to the respective
analysis thread able to analyze that data type

• Results of the analysis are sent back to the
dispatcher in the form of alerts

• Additional metadata may be sent

 Incoming alerts are associated with their
context data via the event id

 Information is stored in the database
 Portions of the capture data, namely, the

portion that triggered the alert, are stored
 Dispatcher notifies all output nuggets that it

has alert data to be retrieved

 Output Nugget receives notification that an
alert is available

 If interested, the output nugget informs the
dispatcher it would like to retrieve this alert

 Dispatcher forwards additional alert
information the output nugget

Data Collector

Dispatcher

Database

Web traffic

SMTP traffic

API

Check Resource
Query Database

Local Cache

Check cache

Data/

Metadata

Threads out

Dispatcher

Detection
Nugget

Detection
Nugget

Data type 1

Data type 2

Data type 3

Type 1 thread

Type 2 thread

Type 3 thread

Detection
NuggetDispatcher

Database

Detection Results/

more metadata

Alert and context data

Dispatcher

Output Nugget

Output Nugget

“I come bearing gifts”

“I come bearing gifts”

“No, thanks”

“Yes, please!”

Delicious Alert Data

 MD5 and size is stored for files and
subcomponents both bad and good

 Primarily this is used to avoid reprocessing
files and subcomponents we’ve already
looked at

 But after a update to any detection nugget,
all known-good entries are “tainted”

 After an update to
detection, previously
analyzed files may be
found to be bad

 We don’t rescan all
files

 But if we see a match
for md5 to a previous
file, we will alert
retroactively

What happens when an email is received?

 Client data collected by Snort-as-a-Collector
 Collected data sent to SMTP Detection

Nugget for separating MIME components
 MIME components are sent back through the

Dispatcher for further analysis

 Modified version of snort 2.8.6
 Uses snort’s protocol analyzers and stream

reassembler to grab session data and hand to
Dispatcher

 Dispatcher sends data to the SMTP Detection
Nugget

 Receives data from SaaC via the Dispatcher
 Extracts SMTP headers for metadata and

tracking information
 Separates all embedded MIME components

to be sent back to Dispatcher for further
analysis

 Collects alerts and sends them to the
Dispatcher for correlation

 In our example, an EXE file was attached to
email, resulting in data being sent to the
ClamAV detection nugget

 Receives input files, runs through ClamAV
 Alerts sent back to Dispatcher

 Receives notifications from Dispatcher that
alerts are available

 If interested in the type of alert, calls back to
Dispatcher for extended data

 Provides formatted alert data to SIM

Nuggets that are currently available. Many more to come, and you can help!

 Snort (up to four custom builds)

 SMTP mail stream capture

 Web file capture

 URL tracking

 Stream data capture on arbitrary ports

 Custom post-mortem debugger

 Traps applications as they crash

 Inserts the file that triggered the crash to Razorback

 Sends the metadata of the crash to the dispatcher

 PDF Parser
 Handle deobfuscation and normalization of

objects

 Potentially passing to Snort detection engine to
use the detection language

 JavaScript Analyzer
 Target known JavaScript attacks

 Search for shellcode in unencode blocks

 Look for heap-spray

 Look for obvious obfuscation possibilities

 Shellcode Analyzer

 Handle common techniques to find EIP

 Look for code blocks that unwrap shellcode

 Check for Windows function resolution

▪ Determine the function call

▪ Capture the arguments

 Provide alerts that include shellcode action

 Deep Alerting System

 Provide full logging output of all alerts

 Write out each component block

 Include normalized view of documents as well

 Maltego Interface

 Provide data transformations targeting the
Razorback database

 Snort rules updater
 ClamAV rules updater
 Triggered session storage via Daemonlogger

 CLI functionality to query:

 Alerts, events, and incidents

 Nugget status

 Display metadata

 Run standardized report set

How are nuggets created?

 Nuggets can be written via a provided API
 The API provides basic functionality for:

- registering a new nugget
- sending data to be analyzed
- sending alert data to be processed
- querying the cache/database

 API is written in C, but wrappers are available
for use with Ruby, Python, and Perl

 The API provides to the developer a set of
function calls passed as part of several C-
structures

 Existing APIs

 DetectionAPI

 CollectorAPI

 APIs for other nugget types forthcoming

 registerCollector()
 Register to Dispatcher

 Identify custom name and UUID representing application type

 checkResource()
 Checks given URI before sending data to be analyzed

 Function assigns an event UUID if none is provided

 sendData()
 Sends collected data for analysis

 Send-and-forget; dispatcher takes care of the rest

 sendMetaData()
 Metadata is handled like normal data

 Sent to a special nugget before being stored in the database

 registerHandler()
 Registers detection function to one or more data types

 Detection function must accept a data pointer and length

 sendAlert()
 Sends alert data to the dispatcher

 Links alert to event by event UUID

 Provides mechanisms for arbitrary and extensible alerting formats

 sendData()/sendMetaData()
 Identical to CollectorAPI counterparts

 Provides detection nuggets with the ability to have sub-data blocks
analyzed via the Dispatcher

 Nuggets can be written in Ruby, Python and
Perl

 Wrappers providing interfaces to the API
functions are provided

Let’s wrap this up!

 Completely modular architecture
 Each component has a highly specialized

function
 Complex functions are handled by routing

sub-blocks back through the Dispatcher
 The Dispatcher is the true heart of the

framework and is responsible for routing data
and alerts throughout the system

 Data Collector
 Detection
 Output
 Correlation
 Defense Update
 Workstation

 Core system is in C
 APIs provided for performing all interactions

with the Dispatcher
 If you can handle a data pointer and a size, all

you need to worry about is what you want to
detect!

 API Wrappers provided for Perl, Ruby, and
Python

 More collection nuggets needed!

 Additional protocols

 More detection nuggets needed!

 Additional file types

 More defense updater nuggets needed!

 Update more network devices

 More correlation nuggets needed!

 Are you great at data mining? We need you!

 Patrick Mullen

 pmullen@sourcefire.com

 phoogazi on Twitter

 Ryan Pentney

 rpentney@sourcefire.com

 Sourcefire VRT

 labs.snort.org

 vrt-sourcefire.blogspot.com

 VRT_Sourcefire on Twitter

