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assembly is in att syntax
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WTF is an ABI ?
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WTF is an Application 
Binary 

Interface ?
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calling convention

arianlim.wordpress.com
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object file and 
library formats

tandemfs.org
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hierarchy of specs
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System V ABI (271 pages)

System V ABI AMD64 Architecture Processor 
Supplement (128 pages)

System V ABI Intel386 Architecture Processor 
Supplement (377 pages)

MIPS, ARM, PPC, and IA-64 too!

Saturday, July 3, 2010



mac osx x86-64 calling convention 

based on

System V ABI AMD64 Architecture 
! ! ! Processor Supplement
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alignment

thomasgroup.com
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end of argument area must be 
aligned on a 16byte boundary.

and $0xfffffffffffffff0, %rsp
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calling convention

arianlim.wordpress.com
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• function arguments from left to right live in:
%rdi,  %rsi,  %rdx,  %rcx,  %r8,  %r9

• that’s for INTEGER class items.

• Other stuff gets passed on the stack (like 
on i386).

• registers are either caller or callee save
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object file and 
library formats

tandemfs.org
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ELF Objects

en.wikipedia.org
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ELF Objects
• ELF objects have headers

• elf header (describes the elf object)

• program headers (describes segments)

• section headers (describes sections)

• libelf is useful for wandering the elf object extracting 
information.

• the executable and each .so has its own set of data
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ELF Object sections
• .text - code lives here 

• .plt - stub code that helps to “resolve” absolute 
function addresses. 

• .got.plt - absolute function addresses; used 
by .plt entries.

• .debug_info - debugging information

• .gnu_debuglink - checksum and filename for 
debug info

• and more.
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vanachteren.net
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Mach-O Objects

developer.apple.com
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Mach-O Objects
• Mach-O objects have load commands

• header (describes the mach-o object)

• load commands (describe layout and linkage info)

• segment commands (describes sections)

• dyld(3) describes some apis for touching mach-o 
objects

• the executable and each dylib/bundle has its own set 
of data
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Mach-O sections

• __text - code lives here

• __symbol_stub1 - list of jmpq instructions for 
runtime dynamic linking

• __stub_helper -  stub code that helps to 
“resolve” absolute function addresses. 

• __la_symbol_ptr -  absolute function 
addresses; used by symbol stub

• and more.
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nm

000000000048ac90 t Balloc

0000000000491270 T Init_Array

0000000000497520 T Init_Bignum

000000000041dc80 T Init_Binding

000000000049d9b0 T Init_Comparable

000000000049de30 T Init_Dir

00000000004a1080 T Init_Enumerable

00000000004a3720 T Init_Enumerator

00000000004a4f30 T Init_Exception

000000000042c2d0 T Init_File

0000000000434b90 T Init_GC

% nm /usr/bin/ruby

symbol  
“value”

symbol names

Saturday, July 3, 2010



objdump
% objdump -D /usr/bin/ruby

offsets opcodes instructions helpful metadata
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readelf
% readelf -a /usr/bin/ruby

This is a *tiny* subset of the data available
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otool
% otool -l /usr/bin/ruby

This is a *tiny* subset of the data available
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Calling functions

callq *%rbx

callq 0xdeadbeef

other ways, too...

Saturday, July 3, 2010



anatomy of a call
412d16:   e8 c1 36 02 00          callq  4363dc # <a_function>

412d1b:  .....

address of this instruction

call opcode*
32bit displacement to the 
target function from the next 
instruction.

(objdump output)
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anatomy of a call
412d16:   e8 c1 36 02 00          callq  4363dc # <a_function>

412d1b:  .....

412d1b = 4363dc  +   000236c1

(x86 is little endian)

(objdump output)
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Hook a_function

Overwrite the displacement so that all calls 
to a_function actually call a different function 
instead.

It may look like this:
int other_function() 
{
        /* do something good/bad */

        /* be sure to call a_function! */
        return a_function();
}
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codez are easy
/* CHILL, it’s fucking psuedo code */

while (are_moar_bytes()) {
  curr_ins = next_ins;
  next_ins = get_next_ins();
  if (curr_ins->type == INSN_CALL) {
    if ((hook_me - next_ins) == curr_ins->displacement) {
      /* found a call hook_me!*/
      rewrite(curr_ins->displacement, (replacement_fn - next_ins)); 
      return 0;
    }
  }
}

... right?.....
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32bit displacement
• overwriting an existing call with another call

• stack will be aligned

• args are good to go

• can’t redirect to code that is outside of: 

• [rip+displacement]

• you can scan the address space looking for 
an available page with mmap, though...
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Doesn’t work for all

• calling a function that is exported by a 
dynamic library works differently.
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How runtime dynamic 
linking works (elf)

0x7ffff7afd6e6

.got.plt entry
Initially, the .got.plt entry contains 
the address of the instruction after 

the jmp.
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How runtime dynamic 
linking works (elf)

0x7ffff7afd6e6

.got.plt entry
An ID is stored and the rtld is 

invoked.
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How runtime dynamic 
linking works (elf)

0x7ffff7afd6e6

.got.plt entry

Saturday, July 3, 2010



How runtime dynamic 
linking works (elf)

0x7ffff7b34ac0

.got.plt entry
rtld writes the address of 

rb_newobj to the .got.plt entry.
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How runtime dynamic 
linking works (elf)

0x7ffff7b34ac0

.got.plt entry
rtld writes the address of 

rb_newobj to the .got.plt entry.

calls to the PLT entry jump 
immediately to rb_newobj now 

that .got.plt is filled in.
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Hook the GOT

Redirect execution by overwriting all 
the .got.plt entries for rb_newobj in each 
DSO with a handler function instead.
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0xdeadbeef

.got.plt entryVALUE other_function() 
{  
      new_obj = rb_newobj();
      /* do something with  new_obj */
      return new_obj;
}

Hook the GOT

NO, it isn’t. other_function() lives in it’s own DSO, so its 
calls to rb_newobj() use the .plt/.got.plt in its own DSO.

As long as we leave other_function()‘s DSO unmodified, we’ll 
avoid an infinite loop.

WAIT... other_function() calls rb_newobj() isn’t that an infinite loop?
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elf

mach-o

me
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what else is left?

inline functions.
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add_freelist
• Can’t hook because add_freelist is inlined:

static inline void
add_freelist(p)
    RVALUE *p;
{
    p->as.free.flags = 0;
    p->as.free.next = freelist;
    freelist = p;
}

• The compiler has the option of 
inserting the instructions of this 
function directly into the callers.

• If this happens, you won’t see any calls.
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So... what now?
• Look carefully at the generated code:

static inline void
add_freelist(p)
    RVALUE *p;
{
    p->as.free.flags = 0;
    p->as.free.next = freelist;
    freelist = p;
}

• Notice that freelist gets updated.

• freelist has file level scope.

• hmmmm......
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A (stupid) crazy idea
• freelist has file level scope and lives at some 

static address.

• add_freelist updates freelist, so...

• Why not search the binary for mov instructions 
that have freelist as the target!

• Overwrite that mov instruction with a call to 
our code!

• But... we have a problem. 

• The system isn’t ready for a call instruction.
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alignment

thomasgroup.com
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calling convention

arianlim.wordpress.com
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Isn’t ready? What?
• The 64bit ABI says that the stack must be 

aligned to a 16byte boundary after any/all 
arguments have been arranged.

• Since the overwrite is just some random 
mov, no way to guarantee that the stack is 
aligned.

• If we just plop in a call instruction, we 
won’t be able to arrange for arguments to 
get put in the right registers.

• So now what?
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jmp

• Can use a jmp instruction.

• Transfer execution to an assembly stub 
generated at runtime.

• recreate the overwritten instruction

• set the system up to call a function

• do something good/bad

• jmp back when done to resume execution
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checklist
• save and restore caller/callee saved 

registers.

• align the stack.

• recreate what was overwritten.

• arrange for any arguments your 
replacement function needs to end up in 
registers.

• invoke your code.

• resume execution as if nothing happened.
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this instruction updates the freelist and comes from 
add_freelist:

Can’t overwrite it with a call instruction because the 
state of the system is not ready for a function call.

The jmp instruction and its offset are 5 bytes wide.
Can’t grow or shrink the binary, so insert 2 one byte 

NOPs.
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this instruction updates the freelist and comes from 
add_freelist:

Can’t overwrite it with a call instruction because the 
state of the system is not ready for a function call.

The jmp instruction and its offset are 5 bytes wide.
Can’t grow or shrink the binary, so insert 2 one byte 

NOPs.

address of assembly stub
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this instruction updates the freelist and comes from 
add_freelist:

Can’t overwrite it with a call instruction because the 
state of the system is not ready for a function call.

The jmp instruction and its offset are 5 bytes wide.
Can’t grow or shrink the binary, so insert 2 one byte 

NOPs.

must jump back here
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shortened assembly 
stub
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shortened assembly 
stub
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shortened assembly 
stub
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shortened assembly 
stub
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shortened assembly 
stub
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shortened assembly 
stub
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shortened assembly 
stub
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shortened assembly 
stub

void handler(VALUE freed_object) 
{
        mark_object_freed(freed_object);
        return;
}
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shortened assembly 
stub
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and it actually works.

gem install memprof
http://github.com/ice799/memprof
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Sample Output

require 'memprof'
Memprof.start
require "stringio"
StringIO.new
Memprof.stats

    108 /custom/ree/lib/ruby/1.8/x86_64-linux/stringio.so:0:__node__
     14 test2.rb:3:String
      2 /custom/ree/lib/ruby/1.8/x86_64-linux/stringio.so:0:Class
      1 test2.rb:4:StringIO
      1 test2.rb:4:String
      1 test2.rb:3:Array
      1 /custom/ree/lib/ruby/1.8/x86_64-linux/stringio.so:0:Enumerable
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a web-based heap visualizer and leak analyzer
memprof.com
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a web-based heap visualizer and leak analyzer
memprof.com
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memprof.com
a web-based heap visualizer and leak analyzer
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memprof.com
a web-based heap visualizer and leak analyzer
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memprof.com
a web-based heap visualizer and leak analyzer
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memprof.com
a web-based heap visualizer and leak analyzer
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evilgem demo/example?
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how to defend against it

• NX bit                                -                  call mprotect

• strip debug information        -   mostly prebuilt binaries

• statically link everything        -  extremely large binaries

• put all .text code in ROM     -                           maybe?

• don’t load DSOs at runtime. -           no plugins, though
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my future research: 
exploring alternative 

binary formats.
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slayerinc.com
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globalhealthandfitness.com
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alignment

thomasgroup.com
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calling convention

arianlim.wordpress.com
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object file and 
library formats

tandemfs.org

Saturday, July 3, 2010



questions?
joe damato

@joedamato
timetobleed.com

http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/hot-patching-inlined-functions-with-x86_64-asm-metaprogramming/
http://timetobleed.com/rewrite-your-ruby-vm-at-runtime-to-hot-patch-useful-features/

read more:
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