
function hooking for
osx and linux

joe damato
@joedamato

timetobleed.com

Saturday, July 3, 2010

slides on timetobleed.com

call me a script kiddie:
@joedamato

Saturday, July 3, 2010

Saturday, July 3, 2010

globalhealthandfitness.com

Saturday, July 3, 2010

slayerinc.com

Saturday, July 3, 2010

dbgrady.files.wordpress.com

assembly is in att syntax

Saturday, July 3, 2010

WTF is an ABI ?

Saturday, July 3, 2010

WTF is an Application
Binary

Interface ?

Saturday, July 3, 2010

alignment

thomasgroup.com

Saturday, July 3, 2010

calling convention

arianlim.wordpress.com

Saturday, July 3, 2010

object file and
library formats

tandemfs.org

Saturday, July 3, 2010

hierarchy of specs

Saturday, July 3, 2010

topatoco.com

Saturday, July 3, 2010

System V ABI (271 pages)

System V ABI AMD64 Architecture Processor
Supplement (128 pages)

System V ABI Intel386 Architecture Processor
Supplement (377 pages)

MIPS, ARM, PPC, and IA-64 too!

Saturday, July 3, 2010

mac osx x86-64 calling convention

based on

System V ABI AMD64 Architecture
! ! ! Processor Supplement

Saturday, July 3, 2010

gregs-wines.com

Saturday, July 3, 2010

alignment

thomasgroup.com

Saturday, July 3, 2010

end of argument area must be
aligned on a 16byte boundary.

and $0xfffffffffffffff0, %rsp

Saturday, July 3, 2010

calling convention

arianlim.wordpress.com

Saturday, July 3, 2010

• function arguments from left to right live in:
%rdi, %rsi, %rdx, %rcx, %r8, %r9

• that’s for INTEGER class items.

• Other stuff gets passed on the stack (like
on i386).

• registers are either caller or callee save

Saturday, July 3, 2010

object file and
library formats

tandemfs.org

Saturday, July 3, 2010

steverubel.typepad.com

Saturday, July 3, 2010

ELF Objects

en.wikipedia.org

Saturday, July 3, 2010

ELF Objects
• ELF objects have headers

• elf header (describes the elf object)

• program headers (describes segments)

• section headers (describes sections)

• libelf is useful for wandering the elf object extracting
information.

• the executable and each .so has its own set of data

Saturday, July 3, 2010

ELF Object sections
• .text - code lives here

• .plt - stub code that helps to “resolve” absolute
function addresses.

• .got.plt - absolute function addresses; used
by .plt entries.

• .debug_info - debugging information

• .gnu_debuglink - checksum and filename for
debug info

• and more.

Saturday, July 3, 2010

vanachteren.net

Saturday, July 3, 2010

Mach-O Objects

developer.apple.com

Saturday, July 3, 2010

Mach-O Objects
• Mach-O objects have load commands

• header (describes the mach-o object)

• load commands (describe layout and linkage info)

• segment commands (describes sections)

• dyld(3) describes some apis for touching mach-o
objects

• the executable and each dylib/bundle has its own set
of data

Saturday, July 3, 2010

Mach-O sections

• __text - code lives here

• __symbol_stub1 - list of jmpq instructions for
runtime dynamic linking

• __stub_helper - stub code that helps to
“resolve” absolute function addresses.

• __la_symbol_ptr - absolute function
addresses; used by symbol stub

• and more.

Saturday, July 3, 2010

blog.makezine.com

Saturday, July 3, 2010

nm

000000000048ac90 t Balloc

0000000000491270 T Init_Array

0000000000497520 T Init_Bignum

000000000041dc80 T Init_Binding

000000000049d9b0 T Init_Comparable

000000000049de30 T Init_Dir

00000000004a1080 T Init_Enumerable

00000000004a3720 T Init_Enumerator

00000000004a4f30 T Init_Exception

000000000042c2d0 T Init_File

0000000000434b90 T Init_GC

% nm /usr/bin/ruby

symbol
“value”

symbol names

Saturday, July 3, 2010

objdump
% objdump -D /usr/bin/ruby

offsets opcodes instructions helpful metadata

Saturday, July 3, 2010

readelf
% readelf -a /usr/bin/ruby

This is a *tiny* subset of the data available

Saturday, July 3, 2010

otool
% otool -l /usr/bin/ruby

This is a *tiny* subset of the data available

Saturday, July 3, 2010

bassfishin.com

Saturday, July 3, 2010

Calling functions

callq *%rbx

callq 0xdeadbeef

other ways, too...

Saturday, July 3, 2010

anatomy of a call
412d16: e8 c1 36 02 00 callq 4363dc # <a_function>

412d1b:

address of this instruction

call opcode*
32bit displacement to the
target function from the next
instruction.

(objdump output)

Saturday, July 3, 2010

anatomy of a call
412d16: e8 c1 36 02 00 callq 4363dc # <a_function>

412d1b:

412d1b = 4363dc + 000236c1

(x86 is little endian)

(objdump output)

Saturday, July 3, 2010

Hook a_function

Overwrite the displacement so that all calls
to a_function actually call a different function
instead.

It may look like this:
int other_function()
{
 /* do something good/bad */

 /* be sure to call a_function! */
 return a_function();
}

Saturday, July 3, 2010

codez are easy
/* CHILL, it’s fucking psuedo code */

while (are_moar_bytes()) {
 curr_ins = next_ins;
 next_ins = get_next_ins();
 if (curr_ins->type == INSN_CALL) {
 if ((hook_me - next_ins) == curr_ins->displacement) {
 /* found a call hook_me!*/
 rewrite(curr_ins->displacement, (replacement_fn - next_ins));
 return 0;
 }
 }
}

... right?.....

Saturday, July 3, 2010

lemur.com

Saturday, July 3, 2010

32bit displacement
• overwriting an existing call with another call

• stack will be aligned

• args are good to go

• can’t redirect to code that is outside of:

• [rip+displacement]

• you can scan the address space looking for
an available page with mmap, though...

Saturday, July 3, 2010

Doesn’t work for all

• calling a function that is exported by a
dynamic library works differently.

Saturday, July 3, 2010

How runtime dynamic
linking works (elf)

0x7ffff7afd6e6

.got.plt entry
Initially, the .got.plt entry contains
the address of the instruction after

the jmp.

Saturday, July 3, 2010

How runtime dynamic
linking works (elf)

0x7ffff7afd6e6

.got.plt entry
An ID is stored and the rtld is

invoked.

Saturday, July 3, 2010

How runtime dynamic
linking works (elf)

0x7ffff7afd6e6

.got.plt entry

Saturday, July 3, 2010

How runtime dynamic
linking works (elf)

0x7ffff7b34ac0

.got.plt entry
rtld writes the address of

rb_newobj to the .got.plt entry.

Saturday, July 3, 2010

How runtime dynamic
linking works (elf)

0x7ffff7b34ac0

.got.plt entry
rtld writes the address of

rb_newobj to the .got.plt entry.

calls to the PLT entry jump
immediately to rb_newobj now

that .got.plt is filled in.

Saturday, July 3, 2010

rs.tacklewarehouse.com

Saturday, July 3, 2010

Hook the GOT

Redirect execution by overwriting all
the .got.plt entries for rb_newobj in each
DSO with a handler function instead.

Saturday, July 3, 2010

0xdeadbeef

.got.plt entryVALUE other_function()
{
 new_obj = rb_newobj();
 /* do something with new_obj */
 return new_obj;
}

Hook the GOT

NO, it isn’t. other_function() lives in it’s own DSO, so its
calls to rb_newobj() use the .plt/.got.plt in its own DSO.

As long as we leave other_function()‘s DSO unmodified, we’ll
avoid an infinite loop.

WAIT... other_function() calls rb_newobj() isn’t that an infinite loop?

Saturday, July 3, 2010

vanachteren.net

Saturday, July 3, 2010

tlaneve.files.wordpress.com

Saturday, July 3, 2010

elf

mach-o

me

Saturday, July 3, 2010

what else is left?

inline functions.

Saturday, July 3, 2010

add_freelist
• Can’t hook because add_freelist is inlined:

static inline void
add_freelist(p)
 RVALUE *p;
{
 p->as.free.flags = 0;
 p->as.free.next = freelist;
 freelist = p;
}

• The compiler has the option of
inserting the instructions of this
function directly into the callers.

• If this happens, you won’t see any calls.

Saturday, July 3, 2010

So... what now?
• Look carefully at the generated code:

static inline void
add_freelist(p)
 RVALUE *p;
{
 p->as.free.flags = 0;
 p->as.free.next = freelist;
 freelist = p;
}

• Notice that freelist gets updated.

• freelist has file level scope.

• hmmmm......

Saturday, July 3, 2010

A (stupid) crazy idea
• freelist has file level scope and lives at some

static address.

• add_freelist updates freelist, so...

• Why not search the binary for mov instructions
that have freelist as the target!

• Overwrite that mov instruction with a call to
our code!

• But... we have a problem.

• The system isn’t ready for a call instruction.

Saturday, July 3, 2010

alignment

thomasgroup.com

Saturday, July 3, 2010

calling convention

arianlim.wordpress.com

Saturday, July 3, 2010

Isn’t ready? What?
• The 64bit ABI says that the stack must be

aligned to a 16byte boundary after any/all
arguments have been arranged.

• Since the overwrite is just some random
mov, no way to guarantee that the stack is
aligned.

• If we just plop in a call instruction, we
won’t be able to arrange for arguments to
get put in the right registers.

• So now what?
Saturday, July 3, 2010

jmp

• Can use a jmp instruction.

• Transfer execution to an assembly stub
generated at runtime.

• recreate the overwritten instruction

• set the system up to call a function

• do something good/bad

• jmp back when done to resume execution

Saturday, July 3, 2010

picasaweb.google.com/lh/photo/-R3BPlqOq8MfQGFTduIqCA

Saturday, July 3, 2010

checklist
• save and restore caller/callee saved

registers.

• align the stack.

• recreate what was overwritten.

• arrange for any arguments your
replacement function needs to end up in
registers.

• invoke your code.

• resume execution as if nothing happened.

Saturday, July 3, 2010

this instruction updates the freelist and comes from
add_freelist:

Can’t overwrite it with a call instruction because the
state of the system is not ready for a function call.

The jmp instruction and its offset are 5 bytes wide.
Can’t grow or shrink the binary, so insert 2 one byte

NOPs.

Saturday, July 3, 2010

this instruction updates the freelist and comes from
add_freelist:

Can’t overwrite it with a call instruction because the
state of the system is not ready for a function call.

The jmp instruction and its offset are 5 bytes wide.
Can’t grow or shrink the binary, so insert 2 one byte

NOPs.

address of assembly stub

Saturday, July 3, 2010

this instruction updates the freelist and comes from
add_freelist:

Can’t overwrite it with a call instruction because the
state of the system is not ready for a function call.

The jmp instruction and its offset are 5 bytes wide.
Can’t grow or shrink the binary, so insert 2 one byte

NOPs.

must jump back here

Saturday, July 3, 2010

shortened assembly
stub

Saturday, July 3, 2010

shortened assembly
stub

Saturday, July 3, 2010

shortened assembly
stub

Saturday, July 3, 2010

shortened assembly
stub

Saturday, July 3, 2010

shortened assembly
stub

Saturday, July 3, 2010

shortened assembly
stub

Saturday, July 3, 2010

shortened assembly
stub

Saturday, July 3, 2010

shortened assembly
stub

void handler(VALUE freed_object)
{
 mark_object_freed(freed_object);
 return;
}

Saturday, July 3, 2010

shortened assembly
stub

Saturday, July 3, 2010

and it actually works.

gem install memprof
http://github.com/ice799/memprof

Saturday, July 3, 2010

http://github.com/ice799/memprof
http://github.com/ice799/memprof

Sample Output

require 'memprof'
Memprof.start
require "stringio"
StringIO.new
Memprof.stats

 108 /custom/ree/lib/ruby/1.8/x86_64-linux/stringio.so:0:__node__
 14 test2.rb:3:String
 2 /custom/ree/lib/ruby/1.8/x86_64-linux/stringio.so:0:Class
 1 test2.rb:4:StringIO
 1 test2.rb:4:String
 1 test2.rb:3:Array
 1 /custom/ree/lib/ruby/1.8/x86_64-linux/stringio.so:0:Enumerable

Saturday, July 3, 2010

a web-based heap visualizer and leak analyzer
memprof.com

Saturday, July 3, 2010

a web-based heap visualizer and leak analyzer
memprof.com

Saturday, July 3, 2010

memprof.com
a web-based heap visualizer and leak analyzer

Saturday, July 3, 2010

memprof.com
a web-based heap visualizer and leak analyzer

Saturday, July 3, 2010

memprof.com
a web-based heap visualizer and leak analyzer

Saturday, July 3, 2010

memprof.com
a web-based heap visualizer and leak analyzer

Saturday, July 3, 2010

evilgem demo/example?

Saturday, July 3, 2010

buycostumes.com

Saturday, July 3, 2010

emeraldinsight.com

Saturday, July 3, 2010

how to defend against it

• NX bit - call mprotect

• strip debug information - mostly prebuilt binaries

• statically link everything - extremely large binaries

• put all .text code in ROM - maybe?

• don’t load DSOs at runtime. - no plugins, though

Saturday, July 3, 2010

slashgear.com

Saturday, July 3, 2010

my future research:
exploring alternative

binary formats.

Saturday, July 3, 2010

slayerinc.com

Saturday, July 3, 2010

globalhealthandfitness.com

Saturday, July 3, 2010

alignment

thomasgroup.com

Saturday, July 3, 2010

calling convention

arianlim.wordpress.com

Saturday, July 3, 2010

object file and
library formats

tandemfs.org

Saturday, July 3, 2010

questions?
joe damato

@joedamato
timetobleed.com

http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/hot-patching-inlined-functions-with-x86_64-asm-metaprogramming/
http://timetobleed.com/rewrite-your-ruby-vm-at-runtime-to-hot-patch-useful-features/

read more:

Saturday, July 3, 2010

http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/

