
Token Kidnapping's
Revenge

Author: Cesar Cerrudo
(cesar.at.argeniss.dot.com)

Argeniss – Information Security & Software

Table of contents
Table of contents..2
Abstract...3
Introduction..4
Some theory..5
The Tools..6
Finding the vulnerabilities..6
Bypassing Microsoft fix for Token Kidnapping on Windows 2003 and XP.....................................10
Preventing exploitation...13
Conclusion..14
Special Thanks..15
About the author...16
References..17
About Argeniss...18

-2- www.argeniss.com

Argeniss – Information Security & Software

Abstract

This document describes some Microsoft Windows elevation of privilege vulnerabilities, how
they were found with the use of simple tools and how they can be exploited. Starting with a
little security issue that then leads to more significant vulnerabilities finding. All the
vulnerabilities detailed here are not publicly know at the time of this document release.

-3- www.argeniss.com

Argeniss – Information Security & Software

Introduction

Token Kidnapping [1] is the name of a research I did some time ago, it consisted of security
issues and techniques that allowed elevation of privileges on all recent Windows operating
systems. On Windows 2003 and XP it allowed to elevate to Local System account from any
account that had impersonation rights. On Windows Vista and 2008 it allowed to elevate to
Local System account from Network Service and Local Service accounts.

The old Token Kidnapping issues were fixed by Microsoft. This new research, presented in this
document, demonstrates that those Microsoft fixes were not enough and elevation of privileges
is still possible on all Windows versions.

Many people wonder how security research is performed, what tools are used, how is the
process of vulnerability finding, etc. Based on that I tried to make this document as practical
and detailed as possible in order to the reader can learn and easily understand it.

-4- www.argeniss.com

Argeniss – Information Security & Software

Some theory

Before starting we need to understand some theory, people with enough knowledge could skip
this part.

Impersonation

Is the ability of a thread to execute using different security information than the process that
owns the thread. Threads impersonate in order to run code under another user account, all
ACL checks are done against the impersonated users. Impersonation can only be performed by
processes with the following privilege: “Impersonate a client after authentication”
(SeImpersonatePrivilege). When a thread impersonates it has an associated impersonation
token.

Token

An access token is an object that describes the security context of a process or thread. It
includes the identity and privileges of the user account associated with the process or thread.
They can be Primary or Impersonation tokens, Primary ones are those that are assigned to
processes, Impersonation ones are those that can be get when impersonation occurs. There
are four impersonation levels: SecurityAnonymous, SecurityIdentity, SecurityImpersonation,
SecurityDelegation. Impersonation takes place mostly during Inter Process Communication
(IPC) using Local Procedure Call (LPC), Named Pipes, etc. Impersonation can be limited by
clients by setting proper options on the calling APIs.

Windows 2003 and XP services security

Services run under Local System, Network Service, Local Service and regular user accounts. All
services can impersonate. Some Windows services that impersonate privileged accounts are
protected, they are created with “special” permissions, for instance a service running under
Network Service account can't access a protected service running under the same account.
This protection was introduced as a patch to fix the issues detailed in my previous Token
Kidnapping research [1]. Before this patch it was possible to elevate privileges by getting
privileged impersonation tokens from other processes, the patch restricts processes to access
some other processes running under the same account that have privileged impersonation
tokens.

Windows 7, Vista and 2008 R1 & R2 services security

There are lots of security improvements in latest Windows versions, there are new protections
such as:

• Session 0 isolation: protect against Shatter attacks [5] by running services in a
different session (session 0) than regular user processes.

• Least privilege: allow to run Windows services with only the minimum required
privileges.

• Per service SID: each service process has a unique security identification, this allows
service processes to be armored. Service running under “X” account can't access
other service resources no matter the other service is running under the same “X”
account.

• Write restricted token: services can have write access to resources only if explicitly
granted to the service SID, logon SID, Everyone SID or write-restricted SID.

• Restricted network access: services can only accept and make connections on
specified ports and protocols. Services can be restricted to have no network access.

-5- www.argeniss.com

Argeniss – Information Security & Software

This is implemented as firewall rules that can't be disabled after service starts.
• In Windows 7 and 2008 R2, IIS 7.5 worker processes don't run any more under

Network Service account by default as they did on Windows 2008 R1 and Windows
2003. Now they run under a special account named DefaultAppPool. This provides
more protection since web applications can't access processes running under
Network Service account nor their resources. But DefaultAppPool account has the
same privileges as Network Service account, it can impersonate.

The Tools

Let's describe the tools that will be used:

• Process Explorer (ProcExp): this tool displays information about all Windows processes,
by selecting a process you can see information such as: Process ID, Windows objects
handles opened and their names, user name that the process is running under,
processes and objects DACL, etc.

• Process Monitor (ProcMon): this tool displays information about registry, file system and
network access by Windows processes.

• WinDbg: it's a user mode and kernel mode debugger for Windows, part of Debugging
tools for Windows.

• Registry Editor (Regedit): Windows tool to display and edit Windows registry.

Finding the vulnerabilities

I was waiting for Windows 7 (Win7) RC to take a quick look at it, mostly for finding low
hanging fruit security issues since I didn't have much free time. I wanted to check also if there
were some new issues similar to the ones described in my previous Token Kidnapping research
[1], basically issues that would allow to elevate privileges and to bypass new protections.

After Win7 RC was released I got a copy, installed it and started to take a look at it. I ran
ProcExp and looked at processes checking for DACLs issues on services, processes and on
process objects such as threads, shared sections, mutexes, etc. Everything looked good so far.

After a while I couldn’t find anything interesting by just clicking around in ProcExp. I
remembered I had found some little issue on Windows 2008 R1 (Win2k8) and I thought I
should check if it was still present on Win7.
The issue is that Telephony service (TapiSrv) has a process object handle from some service
that runs under Local System account and the handle has DuplicateHandle privileges on it. This
means that Telephony service process can duplicate any handle from this other process.
Telephony service runs under Network Service account and it could, for instance, duplicate a
Local System impersonation token handle from the other service process and use it to elevate
privileges.
The issue is not important since in order to exploit it you must first exploit some vulnerability
on Telephony service. But it's security issue anyways that can be exploited to bypass new
Windows services protections. So I tested it on Win7 and it was still present there, that was
good news, it meant Win7 wasn't perfect.

I continued looking around a little more at Win7 but couldn't find any low hanging fruit, I
decided to focus on the only issue I had so far. I didn't know any details about the Telephony
service issue, why “sometimes” it had that process handle with those privileges? it was a
mystery for me. I say “sometimes” because in some tests the process handle wasn't there. I
had to research more the issue.

-6- www.argeniss.com

Argeniss – Information Security & Software

I thought about what I knew about Telephony service:
− It provides functionality for programs that controls telephony devices: modems, VoIP,

etc.
− It doesn't run by default.
− Any user can start it by issuing a “net start tapisrv” command.
− It runs under Network Service account on Win2k8 R1 & R2, Vista and Win7 and it runs

under Local System account in WinXP and Win2k3.
− It has had some remote and local vulnerabilities in the past.

I needed to know more about inner and outer workings of that service, what files and registry
keys it uses, how it communicates with other processes, what applications use its functionality,
etc. I always start by trying the easiest tests that don’t require much time and effort. I thought
I would start by looking at file and registry interaction.
File Monitor and Registry Monitor tools would help, I checked the web for new versions and I
found ProcMon which was a better tool for the job, you can monitor registry, files and network
access with the same tool. After installing ProcMon I ran it and set a filter to just display
Telephony service process activities. This service runs under a Generic Host Process for Win32
Services (svchost.exe process) together with other services. Using ProcExp I identified the
svchost.exe process hosting Telephony service and got its process ID (PID), then I used this
PID to create a filter in ProcMon to just display all activities related only to that process.

The tool was ready I just needed to find a way to interact with Telephony service to force it to
access files, registry, network, etc. I started by stopping the service running: “net stop tapisrv”
and then started it: “net start tapisrv”, obviously this produced a lot of file and registry access
activity. I got dozens of file and registry access items to analyze, but what I would look for?

The first step was to try to quickly understand what the service was doing, what registry keys
and files it accessed and why. This could be a little difficult if you don't have enough Windows
OS knowledge but with some effort you can quickly get practice and experience.
I didn't understand everything about TapiSrv actions, luckily ignorance makes you asking
some questions and try to answer them in a way that makes some sense.

I saw TapiSrv was accessing HKLM\Software\Microsoft\Tracing\tapisrv registry key, I haven't
seen that registry key before so it got my attention. I ran Regedit and located the key. The
first thing that came to my mind was to check key ACL permissions, there was a surprise
there. Network Service, Local Service and Users accounts had the same permissions and they
included the “Set Value” permission. Clearly there was an issue there since any user could
manipulate values that then are read and used by privileged processes. A little smile was being
drown in my face, I started to think the issue was exploitable and I knew how to exploit it but I
had to confirm it.

I looked at the subkeys under HKLM\Software\Microsoft\Tracing key, they were many, I found
that they had the same or similar names as Windows services which made me think that many
Windows services used that key.

At that time I didn't need to know what those registry keys were used for, it was enough
knowing that they were read and possible written by some Windows services. Later when
researching another vulnerability not mentioned here I found out that those registry keys are
used by a tracing functionality implemented by some services. This functionality logs errors,
debug messages, etc. related to the services. Services using this functionality automatically
monitor the registry key for changes so if there is a change all the key values are automatically
read again by the services.

Let's see now why I though the permissions issue was exploitable and I knew how to exploit it.
If you look at the registry values under “HKLM\Software\Microsoft\Tracing\tapisrv” you will
find out one value named “FileDirectory” that has a default value of “%windir%\tracing”, that

-7- www.argeniss.com

Argeniss – Information Security & Software

value is a Windows folder name that is probably read by services and then used to access files.
I located and opened the folder with Windows Explorer but it was empty. Looking at the items
displayed by ProcMon I saw that there weren't items showing access to that folder. Then with a
new look at the key values I saw “EnableFileTracing” value which had a value of “0”, the value
name looked self describing, I had to change that value to “1” and look if something
happened, I did it but nothing happened at that time.

I thought, let's try restarting the service, I stopped it and suddenly a file named tapisrv.log
was created in “c:\windows\tracing” folder. Looking at ProcMon I could see that TapiSrv was
accessing (writing) that file after reading the folder name from the registry key. I had to be
sure, that the folder value was indeed read from that registry key so I changed “FileDirectory”
value to a new value and then started the service. Finally I was right, TapiSrv tried to access a
folder named as the new registry value I had set.

Those who know about Windows local exploitation should already be familiar on how to exploit
this issue. It's pretty simple but we will need a special privilege in order to exploit this issue,
we will need to be able to impersonate. Impersonation privilege is held by most Windows
services and some regular processes. Some popular accounts that have this privilege by
default are IIS application pool accounts used to run IIS worker processes. These processes
are used to run ASP .NET or classic ASP applications, they are a good target for attacks, if you
can upload web pages then you can compromise the server.

The attack is simple, it consists of using impersonation over named pipes [2]. Any user with
impersonation privileges can build an exploit that will create and listen on a named pipe
waiting for a connection (for TapiSrv the named pipe would be \\.\pipe\x\tapisrv.log). Then set
the “FileDirectory” registry value to the name of the already created named pipe without the
file name and using a UNC path (\\localhost\pipe\x), finally setting the “EnableFileTracing”
value to “1”. After that, the service will read the registry values set by the exploit and connect
to the named pipe allowing the exploit to impersonate the user that the exploited service is
running under. If the impersonated user has more privileges than the user running the exploit
then elevation of privileges is successful.
As detailed before, services using tracing functionality monitor for changes to their associated
registry subkey under “HKLM\Software\Microsoft\Tracing” key, the service process will
immediately read the subkey values after the exploit changes them.

While exploiting TapiSrv to elevate privileges was possible, the exploit would have to do many
steps in order to get a Local System impersonation token to fully compromise the system. I
preferred to find a service that ran under Local System account so the exploit could directly
impersonate this account.
Looking at the names of the subkeys under “HKLM\Software\Microsoft\Tracing” registry key I
found a subkey named IpHlpSvc, this name seemed to reference IP Helper service. Using
ProcExp I looked at the properties of the processes in the “Services” tab until I found the IP
Helper service running under a svchost.exe process. This process was running as Local System
account being the perfect candidate for exploitation.

After doing some tests I could come up with a reliable exploit that works really well and can be
used on different Windows services including IIS 7 & 7.5, SQL Server, etc. running on Win2k8
R1 and R2, Vista and Win7.

I continued researching TapiSrv just in case there were more issues. I found that dialer.exe
tool interacted with TapiSrv, some actions were recorded by ProcMon when running dialer.exe.
TapiSrv was accessing “HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Telephony”
registry key, again after a quick look at the permissions I found a new issue, Network Service
account had full control over that key. That was clearly an issue since it broke per process SID
service protection allowing any process running under Network Service account to perform any
actions on that registry key. But an issue is no more than a simple bug if you can't exploit it.
Looking at the subkeys I found an interesting one,

-8- www.argeniss.com

Argeniss – Information Security & Software

“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Telephony\Providers” and under this
subkey some interesting values named “ProviderFileNameX” (where the “X” was a number
starting at 0) that looked as file names.
I looked at ProcMon and I saw that after Tapisrv read these subkey values it loaded files with
those names as Windows DLLs, this was really interesting, the issue just went from simple bug
to a vulnerability.
Since the key allowed any process running under Network Service account to perform any
action, it was possible to set one of these registry values to an arbitrary DLL to be loaded by
TapiSrv in order to run arbitrary code. TapiSrv runs under Network Service account but in case
you don't remember, it had a process handle with DuplicateHandle privileges of a process
running as Local System account. Once you get an arbitrary DLL inside TapiSrv process, the
DLL code can get that handle and duplicate a Local System impersonation token handle from
the privileged process and fully compromise the system.

I started to think how to build an exploit for that vulnerability. It wasn't straight forward this
time since it was needed to introduce a DLL in the system, then change the registry values and
finally trigger the functionality that will load the DLL.
I went to MSDN to check for TAPI APIs because I needed to find a way to interact with TapiSrv
to get an arbitrary DLL loaded. I remembered that TapiSrv read the registry values and loaded
the DLLs when dialer.exe was ran, probably dialer.exe was calling some TAPI APIs. Looking at
MSDN an API got my attention, lineAddProvider(), the first parameter was named
lpszProviderFilename. The parameter name looked familiar and it was similar to the subkey
values name, I really had to try that API.

ProcMon was still monitoring Tapisrv, I built a simple program that called the API and ran it. I
could see in ProcMon that Tapisrv was trying to access a file named the same as the first API
parameter I used in the API call, that was amazing. Building an exploit for this issue was pretty
simple, just creating a DLL that when loaded it will duplicate a Local System impersonation
token handle obtained from the privileged process that TapiSrv had its handle.

When testing lineAddProvider() API, first I ran the test program as a low privileged user and it
didn't work, it would have been nice if it had worked but it didn't. Then I ran it as an
administrator and it worked, but I needed to try to run it under Network Service account. I
tried that and it worked which made sense since that account could modify the registry key
were the DLL information was saved. But then I tried to run it under Local Service account and
it worked too, that was excellent, that meant it was possible to elevate privileges from any
process running under Local Service account too. There was still something more I had to try,
the same tests on Win2k3.

I checked for the issue in Win2k3 but the registry key had proper permissions, not Network
Service access since Tapisrv runs as Local System on Win2k3. But on WinXP there was an
issue, Network Service and Local Service accounts had full control on the registry key, any
process running under those accounts could easily elevates privileges since TapiSrv runs as
Local System in WinXP.

When testing lineAddProvider() on Win2k3, I got exactly the same results as in Win7.
Exploitation was easier on Win2k3 since TapiSrv runs under Local System. Just calling
lineAddProvider() passing a DLL and the DLL will be loaded and ran under Local System
account by TapiSrv. Finally in WinXP I got the same results as in Win2k3.
It's worth to mention that I also ran tests on Win2k8 R1 & R2 with same results as Win7,
which makes sense since Win2k8 R2 has the same technology as Win7 and it was based on
Win2k8 R1, these operating systems are similar.

When I was running dialer.exe I noticed on ProcExp that Tapisrv process got a dialer.exe
process handle with DuplicateHandle privileges and the same happened when running my test
program that called lineAddProvider(). I realized that Tapisrv always got a process handle from
the processes that interacted with it, calling the APIs, etc.

-9- www.argeniss.com

Argeniss – Information Security & Software

Since in order to be able to elevate privileges on Windows Vista and newer versions it’s needed
the privileged process handle inside Tapisrv process I started to look for the service name from
which TapiSrv got the privileged process handle. I knew the process was on one of the
svchost.exe processes running as Local System account but that process had running many
services inside. I had to find the right service that interacted with Tapisrv. I searched for the
svchost.exe process with ProcExp which I could easily identify it since I got the process id from
the information displayed by ProcExp about the process handle inside Tapisrv process.
In the “Services” tab in the svchost.exe process properties a lot of services were displayed.
There were two options for finding the right service, stopping the services one by one until the
process handle would disappear from TapiSrv or try to guess which service could be the one
based on the name, intuition, etc. Looking at the services names there was one called Remote
Access Connection Manager (RasMan), let’s see: remote, connection, access? That should ring
some bells. This could be the one I’m looking for, I thought, so I stopped it and the
svchost.exe process handle disappeared from TapiSrv process, it was the one.

I checked RasMan service details with Windows Services tool (Administrative Tools->Services),
I saw that it has dependencies with Telephony service (TapiSrv) and that the service startup
type was manual. This last option was the cause that sometimes the svchost.exe process
handle wasn't present in TapiSrv in some of my tests. If RasMas was not started then TapiSrv
didn't have the process handle. Luckily any user can start RasMan service if it isn’t running,
allowing elevation of privileges to be always successful since we can force the process handle
of RasMan to be always present inside TapiSrv.

By just looking at Telephony service I had found so far:
1− Win2k8 R1 & R2, Win7 and Vista Elevation of privileges by any user with impersonation

rights by exploiting weak permissions on Service Tracing functionality registry keys.
2− Win2k3, WinXP, Win2k8 R1 & R2, Win7 and Vista Elevation of privileges by Network and

Local Service accounts by calling lineAddProvider() API.

These issues can be exploited on Windows services such as IIS 6, 7 & 7.5 and SQL Server. On
IIS an attacker only needs to upload a .NET web page with exploit code and then run it to
complete compromise the server. On SQL Server an attacker will need database administrative
permissions and run the exploit by executing xp_cmdshell or sp_addextendedproc stored
procedures allowing the attacker to elevate privileges and run code under Local System
account.

It's important to note that these issues can also be used on post exploitation scenarios, where
an attacker is exploiting a Windows service that has impersonation privileges but it's not
running under Local System account. In this case exploitation is limited since attacker will be
trapped in that service not being able to access other processes, resources, etc. due to new
Windows protections. Abusing the issues detailed in this paper will allow the attacker to
elevate privileges and run code under Local System account bypassing all the new Windows
protections.

*See Chimichurri exploit available with this paper.

Bypassing Microsoft fix for Token Kidnapping on Windows 2003 and XP

On my previous Token Kidnapping research I had found how to get a Local System
impersonation token from WMI processes running under Network or Local Service accounts.
These WMI processes didn’t have any protection in place to prevent other processes running
under the same accounts to access them. This allowed any process running under Network or
Local Service accounts to get a Local System impersonation token and elevate privileges.
Microsoft fixed this issue by properly protecting WMI processes don’t allowing other process
running under the same account to access them.

-10- www.argeniss.com

Argeniss – Information Security & Software

While researching the TapiSrv issues with ProcMon on Win2k3 I noticed some strange
behavior. There were some processes accessing or trying to access the same subkeys and
values under HKEY_CLASSES_ROOT and HKEY_USERS\<UserSID>_Classes registry keys,
getting sometimes “NAME NOT FOUND” when trying to access subkyes and values under this
last key. These subkeys and values were always found under HKEY_CLASSES_ROOT key but
not always under HKEY_USERS\<UserSID>_Classes key. I though that this behavior was
because sometimes an application can be installed for only one user and not for all users, if
this was the case then the information would be on HKEY_USERS\<UserSID>_Classes key
and not on HKEY_CLASSES_ROOT key. But that was just a guess.
I knew that HKEY_CLASSES_ROOT key is mostly used to save information about
OLE/COM/DCOM/ActiveX objects, processes read from that key information needed to
instantiate objects. I looked at the available HKEY_USERS\<UserSID>_Classes keys and I
found that the keys for Network and Local Service accounts, HKEY_USERS\S-1-5-20_Classes
and HKEY_USERS\S-1-5-19_Classes respectively, didn’t have any subkeys nor values. This
was weird.

One of the process that tried to read values from those registry keys, was svchost.exe running
DCOM Server Process Launcher service (DcomLaunch), this process runs under Local System
account. I identified that before a WMI process was ran by DcomLaunch service, this service
tried to read those registry keys. I saw a possible issue there since HKEY_CLASSES_ROOT key
can only be modified by highly privileged accounts such Administrators and Local System, but
HKEY_USERS\<UserSID>_Classes key can also be modified by the account to which the key
belongs to. It’s worth to mention that HKEY_USERS\S-1-5-20_Classes and HKEY_USERS\S-1-
5-19_Classes can be modified by Network and Local Service accounts respectively. These less
privileged accounts, Network and Local Service, can modify values that then could be read
from a high privileged process, in this case DcomLaunch. If DcomLaunch use those values read
from the mentioned registry keys to perform some actions then that could lead to privilege
elevation, so there was a possible issue.

I thought that in order to confirm and exploit this possible issue I would have to create the
same subkeys and values that were read from HKEY_CLASSES_ROOT key under
HKEY_USERS\S-1-5-20_Classes key or HKEY_USERS\S-1-5-19_Classes key, depending which
of them was being read by DcomLaunch process. Then if these values were used instead of the
ones read from HKEY_CLASSES_ROOT key I could be able to confirm the issue and exploit it. I
had a test program that launched a WMI process under Network Service account so I started
to run tests creating subkeys and values under HKEY_USERS\S-1-5-20_Classes key.

I researched what values were read by DcomLaunch from HKEY_CLASSES_ROOT key and what
those values were used for. I found that one of the values read was the default value under
HKEY_CLASSES_ROOT\CLSID\{1F87137D-0E7C-44d5-8C73-4EFFB68962F2}\LocalServer32
subkey, which was “%systemroot%\system32\wbem\wmiprvse.exe –secured”. wmiprvse.exe
is the WMI executable file name, I supposed that this value was used to determine what to run
when WMI was invoked. I thought if I remove the –secured argument then maybe WMI
process won’t be ran protected and I will be able to exploit it again as I did in my previous
Token Kidnapping research. I created HKEY_USERS\S-1-5-20_Classes\CLSID\{1F87137D-
0E7C-44d5-8C73-4EFFB68962F2}\LocalServer32 subkey and set the default value removing “-
secured” argument. ProcMon showed that the new created value was read by DcomLaunch but
no luck, after removing that argument the WMI process was also ran protected.
Another value that was accessed was AppIDFlags under HKEY_CLASSES_ROOT\AppID\
{1F87137D-0E7C-44d5-8C73-4EFFB68962F2} subkey, the value was 0x2. I wondered what
that value could be used for, searching on MSDN I found some information [3]. 0x2 value is
used to secure COM servers, this started to look interesting. I though let’s set this value to 0x0
to see what happens. I created AppIDFlags value under HKEY_USERS\S-1-5-20_Classes\
AppID\{1F87137D-0E7C-44d5-8C73-4EFFB68962F2} subkey and set it to 0x0.
After setting the value to 0x0 I ran some tests and my initial thoughts were confirmed, it was
an issue, I could ran the WMI process unprotected and exploit it as before the Microsoft patch.

-11- www.argeniss.com

Argeniss – Information Security & Software

Finally I realized that adding AppIDFlags value and setting it to 0x2 was the fix Microsoft
introduced to patch the old issue on WMI processes [4] and that the new protection could be
bypassed by exploiting this new issue.

The described issue only affects Windows 2003 and XP since HKEY_USERS\S-1-5-20_Classes
and HKEY_USERS\S-1-5-19_Classes keys don’t exist anymore on newer Windows versions.

*See Churraskito exploit available with this paper.

Finding more issues

While I was researching the already described issues, I saw and realized about some
interesting things.
There is clearly a design mistake sharing HKEY_USERS\S-1-5-20 and HKEY_USERS\S-1-5-19
keys between all the processes that run under Network and Local Service accounts. Those
registry keys have full control permissions for Network and Local Service accounts
respectively, allowing any process running under those accounts to modify those registry keys
values at will.
For instance a process “X” running under Network Service account can modify some file path
value with a named pipe while listen on it. Then the process “X” can get an impersonation
token when another process “Y” running under Network Service account reads that registry
value and then tries to access the named pipe.
This completely breaks almost all new services protections. It allows access from process “X”
to process “Y” if both run under the same account because once process “X” gets the
impersonation token it can be used to access process “Y”.

I also found a couple of minor issues related to high privileged process not dropping privileges
before trying to access files. HKEY_USERS\UserSID registry key has full control permissions for
the user to which the key belongs to, meaning that the user can set arbitrary registry values.
Consent.exe (Consent UI for administrative applications) is the program that shows the dialog
window when you choose to run a program as Administrator in newer Windows versions. This
program runs under Local System account and it reads
HKEY_USERS\UserSID\AppEvents\Schemes\Apps\.Default\WindowsUAC registry key values.
These values consist of .WAV file paths that the program uses for playing the sound specified
by the user for UAC events. Consent.exe doesn’t drop privileges when accessing the .wav file
allowing any user with impersonation privileges to impersonate Local System account by using
the already described named pipe trick.

Windows Defender service has a similar problem as Consent.exe. Windows Defender process
reads HKEY_USERS\UserSID\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell
Folder key to get information about different user related folders such as Documents and
Internet related folders. Windows Defender service runs under Local System account and it
also doesn’t drop privileges allowing any user with impersonation privileges to impersonate
Local System account by using the already described named pipe trick.

-12- www.argeniss.com

Argeniss – Information Security & Software

Preventing exploitation

You must avoid running processes under Network Service and Local Service account when
possible, try running them as a regular user with the required privileges. Examples of
processes that commonly run under those accounts and are exposed to attacks are IIS worker
processes and SQL Server service process.

On IIS don't run ASP .NET web application in full trust, this won't allow web applications to
impersonate.

On Windows 7, Vista and 2008 R1 & R2 remove Users group from
HKLM\Software\Microsoft\Tracing registry key permissions. This will only prevent exploitation
from regular users with impersonation privileges but won't protect against elevation of
privileges from Network and Local Service accounts. If you already configured IIS worker
processes and SQL Server service process to run under regular user accounts then you will be
safer.

You must disable Telephony service (TapiSrv) if not used, this will prevent elevation of
privileges by loading an arbitrary Dll using lineAddProvider() API on all Windows versions or
by editing HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Telephony\Providers registry
key on Windows 7, Vista, 2008 R1 & R2.

-13- www.argeniss.com

Argeniss – Information Security & Software

Conclusion

Little and insignificant issues can lead to find more interesting issues. While Windows operating
systems are becoming the most secure operating systems on earth there are still some issues
that need attention.
It's possible to elevate privileges on all Microsoft Windows versions, the only requirement is to
be able to impersonate by the user running the exploit.
On Windows Vista, Windows 2008 R1 & R2 and Windows 7 any user having impersonation
privileges can elevate privileges and completely compromise the systems bypassing almost all
new Windows protections. On Windows XP and Windows 2003, Network and Local Service
accounts can elevate privileges and completely compromise the systems.
Some of the applications that are more susceptible to be exploited are Microsoft Internet
Information Services 6, 7 & 7.5 and Microsoft SQL Server.

-14- www.argeniss.com

Argeniss – Information Security & Software

Special Thanks

To Mark Russinovich author of Process Explorer and other great Sysinternals tools, without his
great tools I wouldn't have been able to find most of the vulnerabilities I have found on
Windows and other software.

-15- www.argeniss.com

Argeniss – Information Security & Software

About the author

Cesar Cerrudo is the founder and CEO of Argeniss, a security consultancy and software firm
based in Argentina. He is a security researcher and consultant specializing in application
security. Regarded as a leading application security researcher, Cesar is credited with
discovering and helping to eliminate dozens of vulnerabilities in leading applications including
Microsoft SQL Server, Oracle Database Server, IBM DB2, Microsoft BizTalk Server, Microsoft
Commerce Server, Microsoft Windows, Yahoo! Messenger, etc.

Cesar has authored several white papers on database, application security, attacks and
exploitation techniques and he has been invited to present at a variety of companies and
conferences including Microsoft, Black Hat, Bellua, CanSecWest, EuSecWest, WebSec, HITB,
EkoParty, H2HC, FRHACK, Microsoft BlueHat, etc. Cesar collaborates with and is regularly
quoted in print and online publications such as eWeek, ComputerWorld and other leading
journals.

-16- www.argeniss.com

Argeniss – Information Security & Software

References

[1] Token Kidnapping
http://www.argeniss.com/research/TokenKidnapping.pdf
[2] Discovering and Exploiting Named Pipe Security Flaws for Fun and Profit
http://www.blakewatts.com/namedpipepaper.html
[3] AppIDFlags
http://msdn.microsoft.com/en-us/library/bb427411(VS.85).aspx
[4] Vulnerabilities in Windows Could Allow Elevation of Privilege
http://www.microsoft.com/technet/security/bulletin/MS09-012.mspx
[5] Exploiting design flaws in the Win32 API for privilege escalation
http://web.archive.org/web/20060904080018/http://security.tombom.co.uk/shatter.html

-17- www.argeniss.com

http://web.archive.org/web/20060904080018/http://security.tombom.co.uk/shatter.html
http://www.microsoft.com/technet/security/bulletin/MS09-012.mspx
http://msdn.microsoft.com/en-us/library/bb427411(VS.85).aspx
http://www.blakewatts.com/namedpipepaper.html
http://www.argeniss.com/research/TokenKidnapping.pdf

Argeniss – Information Security & Software

About Argeniss

Argeniss is a small but very dynamic and creative company created in 2005. Argeniss offers
information security consulting and software development services in an outsourcing model.
More than 5 years of experience and satisfied customers prove Argeniss success.

Contact us

Velez Sarsfield 736 PA
Parana, Entre Rios
Argentina

E-mail: info.at.argeniss.dot.com

Tel/Fax: +54 343 4316113

-18- www.argeniss.com

	Table of contents
	Abstract
	Introduction
	Some theory
	The Tools
	Finding the vulnerabilities
	Bypassing Microsoft fix for Token Kidnapping on Windows 2003 and XP
	Preventing exploitation
	Conclusion
	Special Thanks
	About the author
	References
	About Argeniss

