
Breaking cloud isolation
HITB, Amsterdam, 30/05/14

research



Short BIO

● bug hunter (Facebook, Google, Nokia, etc)

● security researcher

● CEO and lead security expert of 



Clouds

● Between business functions and hardware

● Between application code and environment



Shared hostings

● Grandfather of clouds ;)

● Many technologies that were made here 
became basis of clouds



The basics: cloud aliases

● Same application with different data - SaaS

● Same hardware with different platform - 

PaaS, IaaS

● It’s easy to determine technology point of 

next *aaS marketing



The basics: resource sharing

● Filesystems

● Network services

● Execution context at OS



The basics: resource sharing

● Filesystems
○ files contents

○ files names <- don’t forget about that: sess_abcdefg

○ file descriptors <- so IMPORTANT

● Network services

● Execution context at OS



File sharing

● Different application instances on the same 

filesystem

● Sensitive files
○ cross-instances content (application code, 

○ temporary, reports and other race conditions



File sharing

● Different application instances on the same 

filesystem

● Sensitive files
○ authentification such as sessions

○ uploaded files

○ temporary, reports and other race conditions



File sharing

● Different application instances on the same 

filesystem

● How to protect:
○ different chroot and user for each?

○ only 65535 uids at OS =)

○ control chuid() for forks



● Different application instances on the same 

filesystem

● Required LFI/Path traversal bug first at SaaS

● Typically for SaaS, shared hostings fixed 

that at late 90th ;)

File sharing



● Important when you open FD before fork or 

after - privileges for chuid() programs

● API for all interpreters (Ruby,Python,PHP,...)

● Typical cases:
○ descriptor for database connection (already authed)

○ descriptors for log files and journals

File descriptors



● Code prototype:
○ fopen()

○ do something, such as fwrite(), flush(), …

○ fclose()

Difficult case from a wild (our 
practice SaaS security audit)



● Hacker’s look at execution flow:
○ fopen()

○ fwrite() something interesting

○ application crash crash (by memory or exec.time)!

○ fclose() - never called

○ garbage collector magic

○ use foreign FD for our purposes

Difficult case from a wild (our 
practice SaaS security audit)

victim’s 
HTTP 
request 
processing

attacker’s 
HTTP 
request 
processing

Same 
worker 
(PID)

Important thing!
Theme for another 
full report



The basics: resource sharing
● Filesystems

● Network services
○ databases tables (MySQL, Oracle, Postgres, …)

○ noSQL values (memcached, Tarantool, Redis, Couch, MongoDB, ...)

○ custom services (monitoring, billing, management)

● Execution context at OS



● Authentification

○ Privileged ports protection (<1024)

○ Host-based <- SSRF power here

○ Plain/text (login+passwords) <- MITM here

○ Challenge/response (SASL and others)

Network resource sharing



● Spoofing

○ Classic UDP - rare from Internet, common from 

intranet (from cloud node) - net.ipv4.<all>.rp

○ TCP Fast Open secret leak at clouds (IP reusing)

● Unprivilege (<1024) local port reusing

● SSRF classics - bypassing host-based auth

Network resource attack ways



● Packet routes betwee INTERFACES!

○ By default at Debian/RHel ;)

○ Use sysctl net.ipv4.<all>.rp to disable

● UDP services at loopback interface are really common

● TFTP - netboot images, gain control at new nodes at 

(P|I)aaS (SNMP also, but community str there)

● Memcached (by default 11211 TCP and UDP both)

Classic UDP spoofing nowdays



TCP fast open spoofing at clouds



Local port reusing

● Required RCE first of course
● 3rd party privileged application on non-

privileges ports
● Crash them then open this port. I think you 

can do that! Fuzz it guys, FuZ5!!!
● Get some provate data from others



● Cases from a wild
○ monitoring

○ management systems

○ privileged daemon for anything

○ different integration daemons

○ different databases - SQL/noSQL

Local port reusing



● From the Internet to Intranet

● Sometimes better than many A01 injections

● Internal API and others - are you forget 

about auth there?

● Intranet resources: monitoring/wiki/etc - vlan!

Classic SSRF



● Local port for fastcgi is bad

● Use unix sockets for that

● In other cases applications can comminicate locally by 

each others

● For PHP-FPM admin_value provide RCE

https://github.com/ONsec-

Lab/scripts/blob/master/fastcgipacket.rb

FastCGI SSRF features



The basics: resource sharing
● Filesystems

● Network services

● Execution context at OS

○ classic race condition at daemon init scripts

○ depletion entropy of urandom ???



● Look at CVE-2013-1048 first - that really cool

● $ install utility has great error - race condition between 

create file and set privileges

● Good way:

○ fd = open(...)

○ fchmod(fd,...)

What the problem?



● Just only CONCEPT

● Attacker’s worker read all /dev/random

● Victim’s worker read /dev/urandom consists of hashes 

from /dev/random readed before by attacker

● Attacker now know victim’s randoms

● There are many limitation of cource...

/dev/random concept



The end
Contacts:

@wallarm, @d0znpp

http://github.com/wallarm

research

http://github.com/wallarm
http://github.com/wallarm

