Alice's Adventures in Smart Building Land

Steffen Wendzel & Sebastian Szlósarczyk

support: Jaspreet Kaur, Viviane Zwanger, Michael Meier ||| Art: Tobias Wendzel, Anika Schedler

steffen.wendzel@fkie.fraunhofer.de, sebastian.szlosarczyk@fkie.fraunhofer.de

Smart Buildings?

Integrate a Building Automation System (BAS) for control, monitoring, management

Early systems:

Pneumatic components (1950's)

 Heating, ventilation, airconditioning (HVAC)

Later:

- first electronic components (60's)
- and IT network components

Smart Buildings?

Today:

- Huge functionality spectrum
- Integrated into "Internet of Things"
- "Smart"
- Respond to internal and external changes

Smart Buildings: Goals

- Energy saving
- Reducing operating costs
- Reducing the cost of churn
- Enhanced life safety and security
- Fast and effective service
- Environmental friendly

Down the Rabbit Hole: Building Automation Systems **SECURITY**

Vulnerability in Vaillant Heating Systems Allows

Unauthorized Access

malware is given by how Stuxnet hid from site operators that pro were under attack. Siemens had designed the input process ima

... and the **REALITY?**

There is no "THE SMART BUILDING!11!!"

1			
Smart Home	Commercial Building	Large Scale/ Complex	
private owners	janitors with limited skills	professional operators	
most know- how lost after construction finished	professional operation via 3rd party	constant monitoring of BAS functionality	
no elevators		immediate response to problems	
		huge functionality	

How many are online accessible?

- Nobody knows!
- Estimations exist
- Malchow and Klick (2014) counted building automation environments
 - Most were found in the US (circa 15.000)
 - of the found BAS, 9% were linked to known vulnerabilities

- Alternative: local/regional BAS wardriving
 - ...we presented it already in 2012 ③

Security in Smart Buildings

- First issues arose in the 1990's
- Internet of Things increases security concerns
- Easy to apply attacks known from TCP/IP (e.g. spoofing)
- Focus of vendors: security << functionality</p>
 - Lack of security awareness
 - Legacy hard- and software (security means are not always implementable)
 - Patchability problem
 - Insecure web-interfaces / remote access

Data Leakage via BAS

Active / passive data leakage using remote connection of a BAS

Used for legitimate purpose (administration of remote buildings)

Source: Wendzel, S., Kahler, B., Rist, T.: Covert Channels And Their Prevention In Building Automation Protocols: A Prototype Exemplified Using BACnet, Proc. CPSCom, IEEE, 2012.

Not enough **DRAMA!?!???!??**

Smart Building Botnets (SBB)

Short Definition:

- A botnet consisting of BA systems
 - bots placed either on control units
 - ... or remote-control is directly performed (no bot necessary)
- Utilize physical capabilities of BAS to perform malicious actions
 - no spamming, no DoS, …
 - novel scenarios instead!

Smart Building Botnets (SBB)

How to build it?

- Search Shodan
- Perform BAS Wardriving
- GPS-enabled smartphones with malware

Example 1: Mass Surveillance

Remote access to sensor data

- Monitoring of sensor values and actuator states (temperature, presence, heating levels, ...)
- Who in a smart city goes so often to the bathroom each night and is probably ill?
- When can a break-in attempt to a building or whole street be performed at the optimal moment? ... and where exactly?

Scenario 2: Oil / Gas Producer

Thinkable regional attack

- Slightly increase heating levels in smart buildings over night
- ... to sell more oil or gas
- Not easy to keep a low profile!
 - e.g. determining vacant rooms using observation

Network Communication in BAS: NETWORK PROTOCOLS

Various Protocols Exist

- Closed Protocols / Open Protocols
- EIB/KNX, LONtalk, BACnet are most widely used
- We focus on BACnet ...

BACnet in a Nutshell Overview

- Building Automation Control and Network (BACnet)
- A leading protocol in BAS
 - (remote) control and management of smart buildings
 - monitoring of buildings and according devices
- Data and communication of all devices specified in ISO-Standard 16-484-5
- Worldwide more than 730 vendors

BACnet in a Nutshell *Comparison to OSI Layer Model*

Defines four layers

OSI Layer	BACnet Stack Protocol				
Application	BACnet Application Layer				
Network	BACnet Network Layer				
Data Link	BACnet/IP over ISO 8802-2 LLC		MS/TP	LONTalk	
Physical	Ethernet	ARCNET	RS485		

BACnet in a Nutshell

- Network Protocol Data Unit (NPDU) serves for communication of all the devices on network layer
- Control flow and address resolution are managed with Network Protocol Control Information (NPCI)
- Opportunity to prioritize messages
- Payload depicted in Network Service Data Unit (NSDU)
 - network message, e.g. Who-Is
 - contents of application action (APDU)

	Octet	Description	
NPCI	1	Version	
	1	NPCI Control Octet	
	2	Destination Network (DNET)	
	1	Dest. Address Length (DLEN)	
	Variable	Destination Address (DADR)	
	2	Source Network (SNET)	
	1	Source Address Length (SLEN)	
	Variable	Source Address (SADR)	
	1	Hop Count	
NSDU	Variable	Network Layer Message or Application Layer Protocol Data Unit (APDU)	

BACnet in a Nutshell APDU

- Application Protocol Data Unit (APDU) serves for communication of all the devices on application layer
- Datagram type (PDU Type) and segmentation information are managed via Application Protocol Control Information (APCI)
- Payload depicted in Service Request field
 - Request /response for / of application action of a device
 - encoded in ASN.1

Behind the scenes

EXPLOITING BUILDING AUTOMATION PROTOCOLS

Practical security flaws in BACnet

- Authentication and encryption means are specified by the standard, nevertheless they are rarely implemented
 - Interrogation / scanning made possible
- Large attack surface (few were already known before)
 - Smurf-like attack
 - Router Adv. Flooding
 - Traffic Redirection
 - DoS Re-Routing
 - Malformed Messages
 - Inconsistent Retransmissions

Behind the scenes: Exploiting BAS Attacking scenario

- Attacker Eve: Sends malformed or spoofed messages remotely to one or more devices in the BAS subnet
- BACnet Broadcast Management Device (BBMD) routes all the messages to the corresponding destination device
- Exploitation of device by Eve

Behind the scenes: Exploiting BAS Smurf Attack

Eve spoofs Who-is-Router-Internet to-Network messages with Eve victim's source address Victim receives all the outgoing/incoming traffic 0x00-Who-is-Router-to-Network SADR = 00:2A:15:00:3C:F1 from all devices in the **BBMD** subnet Exploit: DoS in the case of Flood a too large amount of messages SADR = 00:2A:15:00:3C:F1 Fire **HVAC** Door Alarm

Behind the scenes: Exploiting BAS Traffic Redirection

Behind the scenes: Exploiting BAS *DoS Redirection*

Behind the scenes: Exploiting BAS Inconsistent Retransmissions: Segmentation flaws

- Possibility of sending incorrect sequenced segments/fragments
 - Overlapping fragments
 - Replied fragments
 - Time-out fragments
- Devices cannot cope with wrong segmentation
- Exploit: We cannot ensure inconsistent re-transmission is handled by all BACnet stack implementations of >730 vendors -> Protection required.

Behind the scenes: Exploiting BAS Segmentation flaws

- 1: BACnetConfirmedRequest with segmentation indication (seq.nr. = 1)
- 2: Following segment contains mismatched sequence number (seq.nr. = 7)
- Exploit: Inconsistent Retransmission leads to device crash

Our Solution to prevent attacks

ALICE'S EVIDENCE - TRAFFIC NORMALIZATION FOR BACnet

Traffic Normalization Methodology

- Eliminates ambiguities and prevents devices of proposed attacks, e.g. several types of Denial of Service (DoS) on network layer
- Limits address spoofing
- Can ensure standard conforming network traffic
- Ability to secure legacy systems which are not patchable
 - independent of any platform
- can be integrated into each network protocol

Traffic Normalization *Solution for BACnet*

- Integration into Snort's Traffic Normalizer
 - as extension with own BACnet stack!
- Testbed:

Potential Intrusion Prevention

- Prevention of a subset of presented attacks
- Traffic Normalization as preliminary Intrusion Prevention
- Implementation of stateful context-filter made possible
 - Caching application payload
 - Matching requests to corresponding responses
 - Application-related threats are prevented
- Forensic purposes

Potential

Anomaly Detection – Example on basis of heating device

- Collection of state samples
- Learning of discrete states
- Modelling state-based anomaly recognition
- Modelling n-grams

- Heating time and temperature
- Interaction with temperature measurement device
- Winter (if it is cold) -> heating is turned on
- Summer (if it is warm) -> heating is turned off
- e.g. Midsummer (~35°C, but heating "burns")
- Modelling n-grams, to detect abnormal state
- Prevention

Summary

Summary: IT Security for BAS

- Main concerns: Prone to many current and future security attacks such as
 - Network attacks: Manipulation, fabrication or interruption of the transmitted data over the network
 - Overlay Networks
 - Botnets: Utilize physical capabilities (like sensors, actuators) of buildings and enable to novel attacks

Summary: IT Security for BAS

- Main concerns: Prone to many current and future security attacks such as
 - Device attacks:
 - i) Physical level: component replacement, microprobing
 - ii) Software level: code injection, exploiting algorithm

Summary: IT Security for BAS

- Our Contribution: FKIE Traffic Normalizer
 - Eliminates an attack before it reaches the building equipment
 - Drops/modifies the network traffic using normalization rules based on protocol specification
 - Can be used between organizational sites, buildings and floors

Thank you for your attention!

Our Expertise:

- Secure Building Automation
- Data Leakage Protection
- Network Steganography/ Network Covert Channels

Steffen Wendzel

Head of Secure Building Automation *Cyber Defense Research Group* Fraunhofer FKIE steffen.wendzel@fkie.fraunhofer.de

http://www.wendzel.de

Sebastian Szlósarczyk

Researcher *Cyber Defense Research Group* Fraunhofer FKIE <u>sebastian.szlosarczyk@fkie.fraunhofer.de</u>

